

Prof. Laura Heyderman :: ETH Zurich - Paul Scherrer Institute

Artificial Ferroic Systems: Magnetic Monopoles, Chirality and Bloch Point Singularities

Session on Topology Matters: Structure-Property Relationships On Different Length Scales APS March Meeting, Boston 2019

Mesoscopic Systems http://www.mesosys.mat.ethz.ch

Topic 1 Emergent Magnetic Monopoles in Artificial Spin Ice

ETH From Water Ice to Artificial Spin Ice

MJ Harris *et al.* PRL (1997) RF Wang *et al.* Nature (2006)

LJ Heyderman & RL Stamps J Phys: Condens Matter (2013)

MJ Harris *et al.* PRL (1997)

> LJ Heyderman & RL Stamps J Phys: Condens Matter (2013)

Emergent Magnetic Monopoles & Dirac Strings

Magnetic monopoles in spin ice

C Castelnovo, R Moessner & SL Sondhi Nature (2008)

See also: IA Ryzhkin J. Exp. Theor. Phys (2005)

Spin Ice and Neutron Scattering

DJP Morris et al. Science (2009) T Fennell et al. Science (2009) H Kadowaki et al. J Phys Soc Jpn (2009)

Pinch point singularities

Emergent Magnetic Monopoles & Dirac Strings

E Mengotti et al. Nature Physics (2011)

S Ladak et al. Nature Physics (2010)

ETHFEIMonopoles and Dirac Strings

The Charge Model

- predicts an NaCl-type charge-ordered ground state
- minimizes both the intrasite and intersite Coulomb interaction

C Castelnovo, R Moessner & SL Sondhi Nature (2008)

Emergent Magnetic Monopoles & Dirac Strings

Smeared magnetic charge: $\rho_m(r)=\int d^3r' \exp(-|r'-r|^2/\xi^2) divH$ Castelnovo et al. Nature (2008)

E Mengotti, LJ Heyderman, A Fraile Rodríguez, F Nolting, RV Hügli, HB Braun Nature Physics (2011)

Emergent Magnetic Monopoles & Dirac Strings

Nature Phys (2011); RV Hügli et al. JAP & Phil Trans Roy Soc A (2012)

Thermally Active Artificial Kagome Ice

A Farhan, PM Derlet, L Anghinolfi, A Kleibert and LJ Heyderman PRB (2017)

Thermal Artificial Square Ice

Field of View 20 μm

"String Regime"

A Farhan et al. PRL (2013) V Kapaklis et al. Nature Nanotech. (2014)

Thermal Artificial Square Ice

Field of View 20 μ m

Field of View 50 μm

"Domain Regime"

A Farhan et al. PRL (2013) V Kapaklis et al. Nature Nanotech. (2014)

Thermal Artificial Square Ice

Field of View 20 μ m

Field of View 50 μm

Thermally active systems provide a route to the ground state.....

> A Farhan et al. PRL (2013) V Kapaklis et al. Nature Nanotech. (2014)

Thermal Behaviour

J Morgan et al. Nature Physics (2011) JM Porro et al. NJP (2013) S Zhang et al. Nature (2013)

S Zhang et al. Nature (2013)

Topic 2 Phase transitions in a magnetic metamaterial

Kagome Spin Ice Phases

G Moller, R Moessner

Magnetic multipole analysis of kagome and artificial spin-ice dipolar arrays Phys Rev B (2009)

GW Chern, P Mellado, O Tchernyshyov *Two-Stage Ordering of Spins in Dipolar Spin Ice on the Kagome Lattice* Phys Rev Lett (2011)

L Anghinolfi et al. Nature Communications (2015)

L Anghinolfi et al. Nature Communications (2015)

ETH FED Low Energy Muons (LEM, PSI)

- Zero applied field
- Temperature control
- Local probe
- Magnetic phase transitions
- Tunable implantation depths: 1-100 nm
- Ideal for thin films and nanostructures

L Anghinolfi et al. Nature Communications (2015)

Soft X-ray Resonant Magnetic Scattering J Perron et al. Phys Rev B (2013) O Sendetskyi et al. Phys Rev B (2016)

Soft X-ray Resonant Magnetic Scattering J Perron et al. Phys Rev B (2013) O Sendetskyi et al. Phys Rev B (2016)

Soft X-ray Resonant Magnetic Scattering J Perron et al. Phys Rev B (2013) O Sendetskyi et al. Phys Rev B (2016)

dXY System - Theory

- Continuous ground-state degeneracy
- Order-by-disorder transition: thermal fluctuations → long-range ordered phase
- Theory predicts a continuous transition to AFM stripe order

N Leo, S Holenstein, D Schildknecht, O Sendetskyi, H Luetkens, PM Derlet, V Scagnoli, D Lançon, JRL. Mardegan, T Prokscha, A Suter, Z Salman, S Lee & LJ Heyderman Nature Communications (2018)

N Leo, S Holenstein, D Schildknecht, O Sendetskyi, H Luetkens, PM Derlet, V Scagnoli, D Lançon, JRL. Mardegan, T Prokscha, A Suter, Z Salman, S Lee & LJ Heyderman Nature Communications (2018)

dXY System

N Leo, S Holenstein, D Schildknecht, O Sendetskyi, H Luetkens, PM Derlet, V Scagnoli, D Lançon, JRL. Mardegan, T Prokscha, A Suter, Z Salman, S Lee & LJ Heyderman Nature Communications (2018)

dXY System & Disorder

N Leo, S Holenstein, D Schildknecht, O Sendetskyi, H Luetkens, PM Derlet, V Scagnoli, D Lançon, JRL. Mardegan, T Prokscha, A Suter, Z Salman, S Lee & LJ Heyderman Nature Communications (2018)

N Leo, S Holenstein, D Schildknecht, O Sendetskyi, H Luetkens, PM Derlet, V Scagnoli, D Lançon, JRL. Mardegan, T Prokscha, A Suter, Z Salman, S Lee & LJ Heyderman Nature Communications (2018)

ETH -[-] **- Chirality in Artificial Spin Ice**

Chiral Magnetic Monopoles

N Rougemaille et al. NJP 2013

Domain Walls & Connected Networks

A Pushp et al. Nature Phys 2013 K Zeissler et al. Sci. Rep. 2013

Chiral Ice

Square Ice \rightarrow Chiral Ice

Chiral Ice

Square Ice \rightarrow Chiral Ice

ETH FED Chiral Ice – Thermal Relaxation

ETH FED Chiral Ice – Thermal Relaxation

ETH FED Chiral Ice – Thermal Relaxation

Topic 5 Three dimensional magnetic systems

ETH FEID Three Dimensional Structures

Resonant Ptychographic Tomography

Quantitative hard x-ray phase imaging & resonant elastic scattering \rightarrow element-specific 3D characterization with 25 nm spatial resolution

C. Donnelly et al. PRL (2015)

ETH FEID Hard X-ray Magnetic Tomography

GdCo₂ Pillar

Cut from nugget with FIB

Sample from: R. Galera, CNRS, Grenoble

1 µm

C Donnelly et al. PRB (2016), Nature (2017) and NJP (2018)

ETH Hard X-ray Magnetic Tomography

C Donnelly et al. PRB (2016), Nature (2017) and NJP (2018)

ETH Hard X-ray Magnetic Tomography

C Donnelly et al. PRB (2016), Nature (2017) and NJP (2018)

Acknowledgements

ETH FEID Thanks to Mesoscopic Systems

Mesoscopic Systems http://www.mesosys.mat.ethz.ch

ETH FEI Acknowledgements

Research & Technical Staff, Paul Scherrer Institute Swiss Light Source

- Photoemission Electron Microscopy: Armin Kleibert, Carlos Vaz, Ana Balan, Jaianth Vijayakumar, Tatiana Savchenko, Arantxa Fraile Rodriguez, Loic Le Guyader, Frithjof Nolting
- Scanning Transmission X-ray Microscopy: Joerg Raabe, Peter Warnicke, Stephanie Stevenson, Christoforos Moutafis
- X-ray Scattering: Urs Staub, Aurora Alberca, Joachim Kohlbrecher, José Mardegan
- Hard X-ray Tomography & Imaging: Manuel Guizar Sicairos, Andreas Menzel, Joerg Raabe, Mirko Holler, Elisabeth Müller, Thomas Huthwelker

Condensed Matter Theory Group: Peter Derlet

Laboratory for Muon Spin Spectroscopy: Hubertus Luetkens, Andreas Suter, Thomas Prokscha, Stefan Holenstein

	Acknowledgements
ETH Zurich:	Jannis Lehmann, Manfred Fiebig Phönsi Dao, Manuel Baumgartner, Gunasheel Krishnaswamy, Pietro Gambardella
Univ. Glasgow:	Sebastian Gliga, Robert Stamps (Univ. Manitoba) Yusuke Masaki (Univ. Tokyo)
Univ. Exeter:	Gino Hrkac, Matthew Bryan, Lalita Saharan
Univ. St Andrews:	Machiel Flokstra, Steve Lee
Univ. Cambridge:	Gunnar Möller
Univ. Manchester:	Thomas Thomson, Georg Heldt
UC Dublin:	Remo Hügli, Gerard Duff, Hans-Benjamin Braun
Uppsala University:	Vassilios Kapaklis, Unnar Arnalds, Björgvin Hjörvarsson
SOLEIL Synchrotron:	Nicolas Jaouen, Jean-Marc Tonnerre, Jan Lüning, Bharati Tudu, Maurizio Sacchi
ESRF Synchrotron:	Fabrice Wilhelm, Francois Guillou, Andrei Rogalev, Carsten Detlefs
Adv. Light Source:	Andreas Scholl, Tony Young

Mesoscopic Systems http://www.mesosys.mat.ethz.ch

Artificial Ferroic Systems

- 1. Emergent magnetic monopoles in Artificial Spin Ice
- 2. Phase transitions in a magnetic metamaterial
- 3. Chiral Structures

Artificial Spin Ice – Chirally Coupled Nanomagnets

Artificial Skyrmions

Ising moments on a square lattice

Ising moments on a kagome lattice

Z Luo, TP Dao, A Hrabec, J Vijayakumar, A Kleibert, M Baumgartner, E Kirk, J Cui, G Krishnaswamy, T Savchenko, LJ Heyderman, P Gambardella Science (Accepted 2019)

Artificial Ferroic Systems

- 1. Emergent magnetic monopoles in Artificial Spin Ice
- 2. Phase transitions in a magnetic metamaterial
- 3. Chiral Structures

- 4. Three-dimensional magnetic systems
- 5. Towards Bioinspired Computation
- H Arava, PM Derlet, J Vijayakumar, J Cui, NS Bingham, A Kleibert & LJ Heyderman, Nanotechnology (2018)
- P Gypens et al. Phys Rev Applied (2018)
- JH Jensen et al. DOI: 10.1162/isal_a_00011
- F Caravelli & C Nisoli ArXiv 2019

Mesoscopic Systems http://www.mesosys.mat.ethz.ch